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Design and analysis of two-phase studies with
binary outcome applied to Wilms tumour prognosis
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Summary. Two-phase stratified sampling is used to select subjects for the collection of additional
data, e.g. validation data in measurement error problems. Stratification jointly by outcome and
covariates, with sampling fractions chosen to achieve approximately equal numbers per stratum
at the second phase of sampling, enhances efficiency compared with stratification based on the
outcome or covariates alone. Nonparametric maximum likelihood may result in substantially more
efficient estimates of logistic regression coefficients than weighted or pseudolikelihood procedures.
Software to implement all three procedures is available. We demonstrate the practical importance of
these design and analysis principles by an analysis of, and simulations based on, data from the US
National Wilms Tumor Study.

Keywords: Design efficiency; Logistic regression; Nonparametric maximum likelihood; Stratified
sampling

1. Introduction

Two-phase sampling was introduced by Neyman (1938) as a technique for stratification. The
investigator first draws a simple random sample from the source population and classifies
subjects into strata. Subsamples are drawn from each stratum and detailed covariates are
measured only for individuals sampled at this second phase. By a judicious choice of strata
and of within-stratum sampling ratios, such designs can yield efficient parameter estimates
while minimizing the costs of the collection of data. For example, information may be avail-
able routinely for all subjects on an outcome variable (e.g. relapse) and on a mismeasured
covariate. When cases of relapse and those ‘positive’ for the covariate are rare, it is desirable
to have both categories overrepresented in the validation sample for which true covariate
values are obtained (White, 1982).

This situation is well illustrated by the data in part A of Table 1 from the third and fourth
clinical trials of the National Wilms Tumor Study Group (NWTSG) (D’Angio et al., 1989;
Green et al., 1998). They show the association between treatment outcome and tumour
histology for 4088 children diagnosed with the embryonal cancer of the kidney known as
Wilms tumour. Patients whose tumours are composed of one of the rare cell types known
collectively as ‘unfavourable histology’ (UH) are much more likely to relapse and die than
are patients with tumours of ‘favourable histology’ (FH) (Beckwith and Palmer, 1978). The
histologic diagnosis used for Table 1 is that of the pathologist on duty at the time of treatment
at one of the more than 100 childhood cancer centres that participate in the NWTSG. The
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Table 1. Institutional histology and outcome for Wilms tumourf

Histology A: entire data set (N;;)  B: case—control sample (n;)  C: balanced sample (n;;)

Cases Controls Cases Controls Cases Controls
Favourable 415 3262 415 536 415 316
Unfavourable 156 255 156 35 156 255
Total 571 3517 571 571 571 571
Odds ratio 4.8 5.8 0.47

tCases —relapsed; controls—not relapsed.

Table 2. Results of the weighted likelihood analyses

Variable Results for the following analyses:
Entire 2 strata 8 strata
data set
Case—control  Balanced Case—control  Balanced

Regression coefficients

Intercept —-2.71 —2.72 —2.57 —-2.71 —2.72
Stage 11 0.77 0.79 0.55 0.78 0.78
Stage II1 0.77 0.69 0.48 0.79 0.81
Stage IV 1.05 1.38 1.00 1.07 1.07
UH 1.31 1.55 1.35 1.37 1.46
Stage II x UH 0.15 —0.27 0.12 0.03 —0.05
Stage III x UH 0.59 0.12 0.51 0.41 0.28
Stage IV x UH 1.26 1.02 0.98 1.01 0.91
Standard errors

Intercept 0.11 0.12 0.13 0.11 0.11
Stage 11 0.15 0.18 0.20 0.15 0.15
Stage 111 0.15 0.18 0.20 0.15 0.15
Stage IV 0.18 0.24 0.26 0.18 0.18
UH 0.25 0.36 0.31 0.32 0.32
Stage 11 x UH 0.33 0.50 0.44 0.42 0.43
Stage III x UH 0.32 0.49 0.42 0.42 0.41
Stage IV x UH 0.39 0.83 0.62 0.60 0.63

definitive histologic diagnosis is made at the NWTSG Pathology Center by the individual
pathologist who initially described the favourable and unfavourable subtypes. Compared
with his readings, institutional pathologists misclassify as UH about 2% of the FH tumours
and as FH nearly 30% of the UH tumours. When analysed by using logistic regression,
institutional histology has no prognostic value once account has been taken of central his-
tology. Thus institutional histology may be regarded as an error prone surrogate for central
histology.

Apart from histology, the most important predictor of failure of treatment is the stage of
disease classified as I, localized to the kidney and completely resected, II, spread beyond the
kidney but completely resected, 111, residual tumour in the abdomen or tumour in the lymph
nodes, and 1V, metastatic to the lung or liver. The second column of Table 2 shows the effects
of stage and (central) histology and their interactions as modelled in a logistic regression
equation using data for all 4088 subjects. The outlook is particularly bleak for children with
metastatic UH disease, who fortunately comprise only 1.7% of the total.
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These results required the NWTSG pathologist to examine microscopically several slides
from each of 4088 tumours. Through the appropriate use of stratified sampling we aim to
reduce drastically the use of central pathology. A simple random validation sample of 10% or
25% of the 4088 patients would include relatively few of the 571 relapsed cases. Much more
efficient is a case—control sample (Table 1, part B) consisting of all relapsed cases plus a
random sample of non-relapsed controls (Breslow, 1996). Standard computer programs may
be used with such samples to estimate logistic regression coefficients (odds ratios) other than
the intercept (Prentice and Pyke, 1979). However, the case—control sample contains relatively
few of the rare but informative UH controls. As shown later, more efficient estimates are
obtained with a ‘balanced’ sample (Table 1, part C) of the same size. This contains all
relapsed cases, all (institutional) UH patients and about 10% of the remainder. Since the
crude odds ratio associating relapse and histology in the balanced sample is less than 1,
however, it is clear that some adjustments to a simple logistic regression analysis are needed
to account for the biased sampling.

The essential features of this problem are the binary outcome variable, assumed known
without error for all the study subjects, and the stratification used for the selection of the
phase two sample. Covariates measured at phase two may be discrete or continuous. The
goal is to design and analyse data from the phase two sample to approximate as accurately as
possible the results that would have been obtained by fitting a logistic regression model with
these same covariates to everyone. This paper illustrates methods recently developed and
discussed by Scott and Wild (1997) and Breslow and Holubkov (1997a) by application to the
case—control and balanced samples of NWTSG data. These methods are implemented in S-
PLUS functions (MathSoft, 1996) which, together with the NWTSG data sets, are available
from the authors or from Statlib (http://lib.stat.cmu.edu). Simulation studies
demonstrate the efficiency advantages that result from a careful selection of both the phase
two sample and the method of analysis.

2. Methodology

A formal description of the two-phase study is as follows. At phase one a random sample of
N subjects is drawn from an infinite source population, sometimes known as a superpopu-
lation. All subjects are classified according to a binary outcome variable Y and a stratum
indicator S. Denote by N;; the number with Y =iand S =j, wherei=0,landj=1,... J.
At phase two n;; subjects are selected at random from among the N;; that are available in each
of the resultant 2/ categories and values x;;. of a p-dimensional covariate vector are measured
(k=1, ..., n;). We assume that the association between the outcome and covariates in the
source population is described by the logistic regression model

T
PF(Y:HXZX):PF(Y:HS:]',X:x):%’

M
where x incorporates an intercept with coefficient 3,. For problems in which S represents a
discrete, error prone version of X, the assumed conditional independence of Y and S given X
implies that S'is a surrogate. For other problems, in which S is a discrete explanatory variable
in its own right, we assume that its qualitative or quantitative effects are already included
among the covariates X. The goal is the efficient estimation of the regression coefficients § by
using both phase one {N;;} and phase two {x;;} data.
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2.1. Weighted likelihood
Three estimation methods are currently available. The first is a weighted likelihood (WL)
approach with origins in sampling theory (Flanders and Greenland, 1991). If we denote by

Uy(B) = Ollog{Pr(Y = ilX = x;,)}1/0p

the standard logistic regression scores and by f;; = n;;/N;; the sampling fractions, By solves
the inverse probability-weighted estimate of the score equations that would be used if
covariates were available for all N subjects at phase one,

09 =S f7' 3 Un(9) = 0. )

By is thus known as the Horwitz—Thompson estimate. It follows from standard sampling
and estimating equation theory that, under suitable regularity conditions, [y, is consistent
and asymptotically normally distributed with covariance matrix that may be estimated by the

‘sandwich’
oU 2 fo0\ !
(MF) Zfl] {z Uk n/ <Z jk) }(%)

where 4® denotes uu'. It is easily obtained by fitting a standard logistic regression model to
the phase two data, using as prior weights a variable that takes values f ;1 for observations in
the (4, j) cell.

; (€)

B=BwL

2.2. Pseudolikelihood
Pseudolikelihood (PL) involves the maximization of a product of biased sampling prob-

abilities that are defined as follows. Let P; and é; be given by
exp(ié)) , :
i 1 +exp((5/) r( l| j)’ ( )

so that §; denotes the log-odds for response (¥ = 1) in stratum j. Let p;; denote the prob-
ability that Y =i for a subject with covariates x;; given that S = j and that the subject was
sampled at phase two. We calculate
n;; exp{i(5y — 5;' + xzkﬁ)}
no; +ny; exp(By — 6, + XiTjk/B)
The PL estimate of Schill ez al. (1993) maximizes the PL
LILZ H PUU H pz]k

i,j.k

Pijk = (5)

as a function of the (J + p)-dimensional parameter vector v = (6', 3")". Breslow and Holubkov
(1997b) described in detail how this may be accomplished by fitting a logistic regression
model, with appropriately defined offset and design matrix, jointly to the phase one and two
data. The usual covariance matrix is adjusted by subtraction of an appropriate correction
term.

A slightly simpler PL estimate is obtained by maximizing L, alone to obtain 5 =log(N,;/Ny,)
and substituting in L, to find (p; . This is accomplished by fitting the logistic regression model
(1) to the phase two data using an offset with values log(n;N,;/ny;N,,) for subjects in stratum
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j to correct for the biased sampling (Breslow and Cain, 1988). These two versions of the PL
estimate yield very similar results in practice.

2.3. Nonparametric maximum likelihood

Since the marginal distribution of the stratum and covariates (S, X) has been left unspecified,
equation (1) defines a problem in semiparametric inference. For fixed 3, the nonparamet-
ric maximum likelihood (NPML) estimate of the marginal distribution places mass on the
observed values x;; of X (Gill et al., 1988). Hence NPML estimation for the semiparametric
problem corresponds to ordinary ML estimation for the problem where X is discrete, albeit
taking a large number of values. Scott and Wild (1991, 1997) solved this problem for simple
random sampling at phase one; Breslow and Holubkov (1997a) solved it for case—control
sampling at phase one (see the next section). Although obtained by using different approaches,
the two solutions are identical and may be described as follows. Define & = &,(6;) by

- 10g<n1f —N1j+N+jP,j> s
ng; — Noj + N Py,
and py = pyi(é;, ) by
By = IGXp{i(Ej +x'8))
+ exp(§; + xT5)
The NPML estimate § = (4", By;.) solves the J equations (j =1, . . ., J)
Nij =Ny Pyé) = Z:Zk:ei{l — Pii(&, B)} (6)
and the p-dimensional equation
Z’_: Z,: Zk: el — P8y, B)}xy = 0, (7
where ¢, = —¢, = 1. A logistic regression program again suffices for fitting, but this time it

requires iterative application using a Gauss—Seidel approach (e.g. Jacquez (1970), p. 171), as
follows. Starting with 5,; = log(N,;/Ny;) and solving equation (7) for /3 yields the Breslow and
Cain (1988) version of 3p; . Fitted values p;; are inserted into the right-hand side of equation
(6) which is then solved for é;, or equivalently &;, and the process is repeated. This algorithm
may be slow or fail to converge. Therefore the joint solution of equations (6) and (7) by using
standard numerical techniques is often preferable. It is important to start the iteration at
Bpr and to search for local roots since multiple solutions may exist. Asymptotic covari-
ance matrices for By, were given by Scott and Wild (1997) and by Breslow and Holubkov
(1997a, b).

2.4. Outcome-dependent sampling at phase one

A slightly more complex sampling design involves separate samples of N, cases (Y = 1) and
N, controls (Y = 0) drawn from the source population at phase one. Without additional
information it is then impossible to estimate consistently the intercept (3, in equation (1), even
if complete covariate data are available for all Ny + N, = N subjects. We therefore assume
for the sake of argument that

a=log{Pr(Y=1)/Pr(Y =0)},
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the marginal log-odds of response, is known. With some redefinition of parameters, and
adjustment of covariance matrices to account for the knowledge of «, the preceding method-
ology still applies. Fortunately the covariance adjustments and the assumed value for a only
affect 6 and (3, not the regression coefficients of primary interest. Thus the fact that o may be
unknown is of little consequence.

For this new biased sampling scheme we redefine P; in equation (4) to equal the probability
P;’j- that Y =i given that S = j and that the subject was sampled at phase one. If 6}k denotes the
log-odds of response in stratum j under this new scheme, then

« exp(i6}) N expli(6; — o)}

"7 1+exp(8F) Ny + N, exp(§;—a)’

Estimation in the reparameterized model using equations (6) and (7) yields estimates 5}“ and
(* to which parameters in the original model are related via

b= 8F+ a—log(N\/Ny), J=1, .,
BO = B§+ o —log(N,/Ny)
and 3, =7, 1=1, ..., p— 1. The fact that the distribution of the phase one data is changed

from a single multinomial {N;;} to a pair of independent multinomials {N;} and {N;} leads
to a reduction in the asymptotic variance of the estimating functions (scores) and hence to a
reduction in the asymptotic variance of the parameter estimates. This reflects the additional
information contributed by the assumption that « is known. For the WL estimate the
reduction is achieved by subtraction of

®2
S (z > UW)

from the middle term in equation (3). For the PL and ML estimates, the variance of 3, is
reduced by 1/N, + 1/Ny; see Holubkov (1995).

3. Results and simulations

The results of fitting the interaction model to the case—control and balanced phase two
samples of NWTSG data by using WL are shown in the third and fourth columns of Table 2.
Corresponding results for ML are presented in Table 3. By comparing the regression co-
efficients and standard errors with those for the complete data set (second column), we draw
the following tentative conclusions:

(a) there is little difference between WL and ML for the case—control design;

(b) the balanced design is superior for the estimation of interactions for both WL and ML,
whereas the case—control design is slightly better for the estimation of the main effects
of stage;

(c) ML is better than WL for the balanced design.

Results for PL (not shown) were intermediate.

The preceding analysis used just two strata for sampling cases and controls, namely
histology (FH or UH) as evaluated by the institutional pathologist. This wastes information
since stage was also determined by the institution and hence was known for all patients. A
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Table 3. Results of the ML analyses

Variable Results for the following analyses:
Entire 2 strata 8 strata
data set
Case—control  Balanced Case—control  Balanced

Regression coefficients

Intercept —2.71 —2.72 —2.57 —2.71 —2.71
Stage 11 0.77 0.80 0.55 0.77 0.77
Stage III 0.77 0.69 0.49 0.78 0.79
Stage IV 1.05 1.38 0.97 1.07 1.05
UH 1.31 1.57 1.26 1.36 1.38
Stage II x UH 0.15 —0.25 0.29 0.09 0.10
Stage III x UH 0.59 0.13 0.73 0.49 0.46
Stage IV x UH 1.26 1.07 1.43 0.98 1.37
Standard errors

Intercept 0.11 0.12 0.13 0.11 0.11
Stage II 0.15 0.18 0.20 0.15 0.15
Stage III 0.15 0.18 0.20 0.15 0.15
Stage IV 0.18 0.24 0.25 0.18 0.17
UH 0.25 0.36 0.29 0.30 0.28
Stage 11 x UH 0.33 0.51 0.39 0.39 0.37
Stage III x UH 0.32 0.49 0.37 0.39 0.35
Stage IV x UH 0.39 0.85 0.47 0.55 0.44

second set of analyses, for which results are presented in the fifth and sixth columns of Tables
2 and 3, used eight strata formed by the cross-classification of institutional histology and
stage. The original results for the main effects of stage are now reproduced almost exactly by
both WL and ML. For balanced sampling there is little or no improvement in the WL
standard errors for the UH and interaction effects compared with those obtained earlier. ML
seems better able to utilize the additional phase one data given by the finer stratification,
especially for the case—control design.

We conducted a simulation study to determine whether these general conclusions would
hold once the vagaries of (phase two) sampling were eliminated. 100 separate phase two
samples were drawn for each design and logistic regression models were fitted to them by
using WL, ML and PL. Figs 1 and 2 show graphically the mean-squared error (MSE) of each
regression coefficient, with the original coefficients (entire data set) considered as the true
values. This confirms the essential features already noted from the illustrative analysis. WL
and ML are virtually equivalent for the case—control design when only two strata are used at
phase one. The MSE is reduced much more under ML than under WL by incorporating stage
at phase one or by using the balanced design. Results for PL are intermediate; they generally
agree with those of WL for the case—control design and with ML for the balanced design.

Reilly and Pepe (1995) determined optimal phase two sampling fractions for a fixed total
phase two sample size by studying the asymptotic variances of regression coefficients
estimated by WL. Table 4 contrasts the optimal designs for estimating each of the three
interaction terms with the case—control and balanced designs, treating the entire data set as
the population. The optimal designs sample all the especially rare and informative UH cases
but represent a compromise between the case—control and balanced designs in sampling the
UH controls.
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Fig. 1. MSEs from the simulation study using case—control sampling and WL, PL or ML estimation: (a) stratified
by outcome and histology; (b) stratified by outcome, histology and stage

Fig. 3 graphs the average standard errors observed for the interaction terms in 100 phase
two samples drawn according to the case—control, balanced and (corresponding) optimal
designs. There is little to choose between the balanced and optimal designs, both of which are
superior to the case—control design. Although imperceptible to the eye, the average standard
errors for PL and WL for the balanced design are in some cases actually less than those for
the optimal (WL) design. For example, for estimation of the stage IV x UH interaction, the
average standard error for WL was 0.549 for the optimal and 0.551 for the balanced design.
By contrast, the corresponding average standard errors for ML were 0.497 and 0.472.
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Fig. 2. MSEs from the simulation study using balanced sampling and WL, PL or ML estimation: (a) stratified by
outcome and histology; (b) stratified by outcome, histology and stage

4. Discussion and conclusions

A comparison of the second and last columns of Table 3, or an examination of the ML results
for the second part of Fig. 2, demonstrates very close concordance between logistic regression
coeflicients estimated by using the entire data set of 4088 records and those obtained by using
ML for the balanced, finely stratified sample. Yet the latter required central histology
evaluation for only 1142 patients (28%). Since institutional histology and stage are required
for the determination of the treatment, this means that the essential results of this study could
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Table 4. Phase two sampling fractions (n;;/Nij)

Design Fractions for the following groups:
Cases Controls
FH UH FH UH
Case—control 1.00 1.00 0.16
Balanced 1.00 1.00 0.10
Optimal
Stage II x UH 0.82 1.00 0.15 0.65
Stage 111 x UH 0.83 1.00 0.14 0.72
Stage IV x UH 0.62 1.00 0.17 0.75
Case-control Balanced Optimal
© ®
o o
o o
o o
WL PL ML WL PL ML WL PL ML
I
S ™ ®
xXO o o
=9Q = =
o o o
WL PL ML WL PL ML WL PL ML
© o
o o
< <
o o
Q Q
o o
WL PL ML WL PL ML WL PL ML

Fig. 3. Average standard errors for interaction coefficients from the simulation study using WL, PL or ML
estimation, stratified by outcome and histology

have been obtained with sharply lower (marginal) costs by a careful selection of the slides
sent to the NWTSG pathologist. This of course presumes that slides will be stored for the 2 or
3 years that are needed to determine the outcome and that central pathology is not required
for other purposes.

Three factors contributed to this desirable result. First, even though phase two sampling
was based only on institutional histology and outcome, the strata incorporated institutional
stage as well. This illustrates the basic principle that one should incorporate at phase one as
much of the available data as possible. The obvious limitation is that the phase one data are
necessarily discrete. With smaller sample sizes, too fine a stratification may leave some cells
empty, leading to a breakdown in the methodology due to infinite or indeterminate values for
some sampling fractions or 5/

The second contributing factor was the use of a reasonably informative design, in this case
the ‘balanced’ design. Balance was defined in an ad hoc fashion here to mean sampling of all
relapsed cases and all those with UH tumours. Elsewhere (Breslow and Cain, 1988) it has
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been defined more precisely to mean the selection of {#,;} that are as equal as possible given
the available {N;;} and the total phase two sample size. Even greater overall efficiency would
result if we had applied this principle to the eight strata formed by histology and stage, to
ensure that the phase two sample included more of the 330 available FH stage IV controls
than it did. The attempt to achieve rough parity in numbers of phase two subjects in each of
the 2J cells through the use of a ‘balanced’ design does not always achieve near optimality,
especially not when the model is restrictive. For quantitative linear regression, for example,
it is better to sample at the extremes of the covariate space. In many practical situations,
however, the balanced design represents a reasonable compromise between the competing
demands of efficiency and the need to check model assumptions of linearity or additivity
(Breslow and Cain, 1988). Also, as demonstrated here, optimality of the design depends on
the particular method of estimation; the most efficient design using WL is not necessarily the
most efficient for ML. Reilly (1996) has developed optimal designs for WL estimation when
the total cost of observation, with different costs at phases one and two, is fixed.

The third factor that contributed to the close concordance of estimates was the use of an
efficient estimation method, namely ML. This would be even more important with the less
efficient case—control design (Fig. 1). Apart from the increased computational complexity, the
primary drawback of ML comes about when we are attempting to fit the wrong model. For
example, for administrative purposes we may want to know the slope of the best fitting
(logistic) linear regression model for the population, even in the presence of some curvature.
The great advantage of the Horwitz—Thompson (WL) estimate in such circumstances is that
it will consistently approximate the result that would be obtained if covariate values were
available for all subjects. By contrast, ML and PL do not (Scott and Wild, 1986; Xie and
Manski, 1989). Thus ML achieves efficiency at the cost of a certain lack of robustness. This
was not an issue for the NWTSG study since we used a saturated (interaction) model. It
could be if an additive model were fitted instead.

Two-phase sampling, as considered here, is perhaps the simplest example where data are
missing by design. Whittemore (1997) developed WL estimation for sampling conducted in
three or more phases involving nested partitions of the sample space into increasingly fine
strata, exploiting the fact that the resulting data are subject to a monotone pattern of missing-
ness. Besides the fact that it is broadly applicable to such problems, WL estimation enjoys the
advantages of being relatively easy to implement and, as just mentioned, robust to model
misspecification. Wacholder et al. (1994) developed PL estimation for their partial question-
naire design, whereby different subsets of subjects are missing different (non-nested) sets of
covariate values and where complete data are available for one subset. Since their procedure
requires the consistent estimation of the joint covariate distribution, it is currently restricted
to situations where there are a small number of discrete covariates. Fully efficient ML or
NPML estimation methods have yet to be developed for these more complex designs.
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